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1.  INTRODUCTION 
 

Of the many promising applications of imaging spectroscopy in forest ecosystems is the possibility of 
mapping species composition and distribution with greater accuracy than is possible using standard multispectral 
data.  In areas with complex forest composition, vegetation mapping with hyperspectral imagery requires 
methodological approaches that can handle the complex spectral and vegetation data sets.  In addition, it requires the 
careful implementation of image preprocessing routines that reduce the effects of other surface properties that may 
confound the mapping of forest composition.  In this paper, we outline an approach to mapping the distribution of 
three prominent species in the central Appalachian Mountains using AVIRIS imagery and classification/regression 
trees.  In addition, we evaluate the influence of terrain characteristics on mapping results, and finally compare the 
utility of spring vs. summer AVIRIS imagery for forest mapping.  
 
2.  STUDY AREA AND METHODS 
 
2.1 Study Area 
 
 The study area is the 15,700 ha Green Ridge State Forest (GRSF) in 
western Maryland (Figure 1).  GRSF is located in the Ridge and Valley 
physiographic province of the central Appalachian Mountains, and is 
characterized by steep mountains with deep valleys.  Elevation ranges from 200-
700 m.  The forests were largely cleared around the turn of the twentieth 
century, and are now mostly intact and mature.  Some scattered clearcuts and 
selective cuts are located within the study area, but are limited in extent.  A few 
burned areas are also present; however, the largest areas of uneven forest are 
located in places where gypsy moth defoliation over the last two decades has 
caused substantial tree mortality.  Forests are comprised largely of deciduous 
oaks, with Virginia pine (Pinus virginiana) on some west-facing slopes and 
hemlock (Tsuga canadensis) in some valley bottoms.  The key species include 
white oak (Quercus alba), especially on mesic slopes and at lower elevations, 
red oak (Quercus rubra), and chestnut oak  (Quercus prinus) on ridge tops, high 
elevations and rocky slopes. The understory is largely open, although blueberry 
(Vaccinium spp.) and the evergreen mountain laurel (Kalmia latifolia) can be 
locally abundant.   
 
2.2 Field Data 
 
 Continuous Forest Inventory (CFI) data from the Maryland Department of Natural Resources was used to 
characterize forest composition.  The CFI database includes 436 plots in GRSF, all of which were sampled in 2000 
or 2001.  Each CFI plot is a 0.2 acre (0.08 ha) circular area on which all trees > 12 cm diameter are identified and 
measured.  The CFI plots are arrayed on a regular grid at approximately 550 m intervals, yielding a statistical sample 
of the population of forest properties within the study area.  We processed the tree diameter data to determine total 
basal area (TBA) of each plot, as well as basal area by species (SBA) and relative basal area by species (RBA) for 
each plot.  We use RBA as a measure of species abundance at a plot level.  All plots were geographically referenced 
using a Trimble Pathfinder Pro GPS.  For this research, we concentrate on the distribution of three of the most 
common species in the study area: white oak, chestnut oak, and Virginia pine.    
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Figure 1.  Location of 
Green Ridge State Forest in 
western Maryland. 



 

2.3 Image Data and Preprocessing 
 
 The research presented here uses two AVIRIS images, acquired on 14 May 2000 and 13 July 2001 from an 
altitude of ~19,900 m (Table 1).  The images were atmospherically corrected using the ATmospheric REMoval 
program (ATREM) (Gao et al. 1993).  The AVIRIS imagery exhibited a cross-track view-angle dependent 
brightness gradient.  This gradient of increasing brightness on the west side of the images results from the AVIRIS 
scan angle and direction, flight path orientation and solar azimuth, and was corrected by fitting a first-order additive 
quadratic curve to the mean radiance by view angle (Kennedy et al. 1997).  The images were georeferenced to UTM 
coordinates in ENVI using a triangulation method with > 70 GCPs per scene and nearest neighbor resampling.  The 
images exhibited the effects of differential terrain illumination due to the presence of steep north-south trending 
mountain ridges in the study area.  We applied an empirical correction method (Allen 2000, Meyer et al. 1993), 
which is described in detail elsewhere in this proceedings (Townsend and Foster 2002).  One objective of the 
research presented here is to determine the consequences of terrain normalization on the capability to map forest 
composition.  Mean spectra for a 3 by 3 pixel window around each plot was collected for all plots in the AVIRIS 
flight line.  This resulted in a sample of 331 plots for the 5/14/2000 scene (Figure 2) and 175 plots for the 7/13/2001 
scene. 

 
2.4 Image Classification 
 
 The forests in GRSF exhibit a range of structure 
and density, with total basal area ranging from recently 
clear-cut (0) to 60 m2ha-1.   The majority of the forests 
have BA values between 16-32 m2ha-1, which is typical 
for 100-year old forests in the region.  However, because 
gross differences in vegetation structure influence overall 
reflectance from forested plots, we constrained our 
analyses to mature, fully stocked forests, i.e., those with 
TBA > 20 m2ha-1.  This stratification required mapping 
TBA to delineate forests based on BA; for this, we used 
multiple stepwise regression (following Townsend 2002) 
to map TBA as a function of AVIRIS image bands.  
Following this, we used classification and regression 
trees (CART) to map composition of individual species.  
A variety of approaches have been used to map forest 
composition with hyperspectral data in mountainous 
landscapes (Martin et al. 1998) and with mixed forests 
(van Aardt and Wynne 2001), including discriminant 
analysis and maximum likelihood classifiers.   CART is 
being used increasingly for mapping from remotely 
sensed imagery (Friedl and Brodley 1997, Friedl et al. 
1999, Hess et al. 1995, Simard et al. 2000) and as such is 
only generally described here.  Classification and 
regression trees (also known as decision trees) are fitted 
by binary recursive partitioning, in which data sets are consecutively divided into smaller subsets with increasing 
statistical homogeneity (Clark and Pregibon 1993).  Classification trees are used with class data, while regression 
trees are used to predict continuous data.  CART approaches are desirable because they are less sensitive to non-
linearities in the input data than methods that require assumptions of Gaussian distributions (as do many image 
classification techniques) (Clark and Pregibon 1993, Venables and Ripley 1994).  In addition, CART is an extremely 
valuable approach for data exploration when a potentially very large set of independent predictor variable are 
available, e.g. with hyperspectral data sets.  CART can be used to determine the best set of bands for predicting 
cover characteristics and does not require data reduction, tests for normality or data transformations.  One limitation 

Sensor Date Time (UTC) Solar Azimuth Solar Elevation
AVIRIS 5/14/2000 15:42:46 133.8 62.62
AVIRIS 7/13/2001 15:47:47 134.94 66.72

Table 1.  Image Characteristics

Figure 2.  True color 14 May 2000 AVIRIS 
image of Green Ridge State Forest.  White dots 
indicate locations of CFI plots. 



 

to CART is that its performance is most robust and repeatable with large data sets, such as the CFI vegetation 
database that we used.  For this work, we used classification trees with relative basal area by species grouped into 
five categories (A = 0%; B = >0 – 10%; C = 10 – 30%; D = 30 – 50%; E = 50 – 100% RBA).  These correspond to 
abundance levels of none, low, medium, moderate and high.   The classification tree models were pruned to avoid 
overfitting the model to the training data using a cost complexity method designed to minimize misclassified results. 
 
3.  PRELIMINARY RESULTS 
 
3.1 Total Plot Basal Area 
 
 Total Basal Area (TBA) was best modeled 
in the corrected 5/14/2000 image using a stepwise 
linear regression involving 13 image bands with an 
R2 of 0.356 (p < 0.03).  Although the R2 was not as 
strong as desired, the relationship was deemed strong 
enough to subset the AVIRIS image for mapping 
species composition in mature forests (TBA ≥ 20) 
using CART.  The bands employed in the TBA 
regression included three in the red portion of the 
spectrum, one on the red edge, and several in the far 
end of the near infrared.  The regression equation was 
used to map TBA for the AVIRIS scene, and was 
then smoothed using a 5x5 median filter to assess the 
appropriateness of the spatial patterns of TBA created 
by the model (Figure 3).  The map showed relatively 
low levels of plot BA in recently clear-cut areas 
throughout the forest, and predicted higher total basal 
area on mesic slopes grading into valley bottoms.  
This resulting map exhibits promise for mapping BA, 
especially because the overall histogram for the 
distribution of BA on the AVIRIS map matches that 
from the CFI sample (Figure 4).  The prediction of 
BA from the 13 July image is not shown here.  
Regression using bands from the July image had an 
R2 < 0.2.  The July image was characterized by fully 
leafed out forests, which probably obscured some of 
the variation in TBA on that image. 
 

Figure 3.  Predicted basal area for forests in Green 
Ridge State Forest.  Gray scale ranges from 0 (black) 
to > 40 m2ha-1 (white). 
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Figure 4.  Comparison of the distribution of actual basal area (left) for the CFI 
plots with predicted BA for the entire study area (right).  



 

3.2 Species Distributions 
 
 The results for predicting species abundance classes are listed in Table 2 for each date and for the 
normalized and non-normalized imagery.  The best model for each species is highlighted.  An example classification 
tree for Virginia pine is presented in Figure 5, with the resultant map in Figure 6.  The bands used in all of the 
classification tree models are listed in Table 3. 
 

 
 

 
3.2.1 Effect of Image Date 
 
 The classification accuracies for species abundance (i.e., relative basal area) vary from 60-76%.  In general, 
the summer image performed better for predicting the individual species.  This probably results from the likelihood 
that not all of the deciduous trees in the region (including white oak and chestnut oak) were fully leafed out on 14 
May 2000, making their detection somewhat problematic.  The fact that classification accuracy for Virginia pine 
was relatively high for both the spring and summer images points to its ease of detection as an evergreen conifer.  
Note that even though the misclassification rates are high, our classification categories are very specific (relative 

Image Date Normalized Original Normalized Original Normalized Original

14 May 2000 0.6009 0.6479 0.6291 0.6479 0.6901 0.6948
13 July 2001 0.6387 0.6807 0.6891 0.605 0.7479 0.7563

Quercus alba Quercus prinus Pinus virginiana

Table 2. Classification tree results.
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Figure 5.  Classification tree for Pinus 
virginiana, generated from the 
normalized AVIRIS image of 14 May 
2000.  Each branch delineates a split 
in the dependent variable (relative 
basal area of P. virginiana) based on 
an AVIRIS image band (identified by 
the prefix w, e.g. w1294 = the AVIRIS 
channel centered on 1294 nm).  
Numbers below each box (node or leaf 
of the tree) indicate the mis-
classification rate for that branch of 
the decision tree. 
 
KEY 
Code Description 
A RBA = 0% 
B 0% < RBA ≤ 10% 
C 10% < RBA ≤ 30% 
D 30% < RBA ≤ 50% 
E RBA > 50% 



 

abundances by species).  We consider these results to be 
very promising for mapping individual species patterns 
using decision trees.  The logical next step to this 
research is to employ a multitemporal classification to 
take advantage of the differing reflectance characteristics 
of each species across seasons. 
 
3.2.2 Topographic Effects 
 
 The comparison of models that used terrain 
normalized imagery versus the uncorrected original 
imagery yielded mixed results.  For chestnut oak, which 
is typically located along steep slopes and ridge tops, the 
terrain-normalized imagery produced the best 
classification of species distribution.  This is no surprise, 
as chestnut oak is typically located on the east and west 
slopes of the ridges in GRSF.  The normalization would 
therefore be expected to improve the classification of this 
species by reducing differences in reflectance between 
illuminated and shadowed slopes.   For Virginia pine, 
there was very little difference between the accuracy of 
models using normalized imagery and uncorrected 
imagery.  This is likely due to the very distinct 
reflectance characteristics of Virginia pine, making it 
easily identifiable regardless of illumination effects.  
Finally, white oak was best predicted using the 
uncorrected imagery.  This was somewhat of a surprise.  
However, because white oak generally occurs on gentle slopes, lower slopes and in flat areas, it is possible that the 
terrain normalization had very little impact on areas where white oak is found, and perhaps introduced some 
confusion in areas where white oak mixes with other deciduous oaks.  Although these results do not provide  

QUAL QUPR PIVU QUAL QUPR PIVU QUAL QUPR PIVU QUAL QUPR PIVU
452 491 433 433 452 423 451 422 471 432 442 422
529 510 442 510 578 500 461 432 490 451 538 693
655 520 539 549 607 655 741 471 538 529 2010 769
665 529 597 703 694 713 807 558 558 731 2060 1117
703 549 636 713 1155 799 1079 664 567 798 2379 1154

1193 568 703 741 1165 1474 1293 702 674 1135 1254
1444 587 1294 1174 1334 1494 1533 865 1333 1572 2010
1484 703 1643 1454 2001 1514 2020 2180 2020 1632 2060
1623 1334 2001 1533 2011 2001 2389 2270 2349 1772 2379
1792 1444 2091 1633 2021 2330 2438 2419 1782 2419
2041 1494 1703 2031 2309 2438
2211 1524 2011 2151 2438
2420 2011 2031 2380

2191 2231
2410
2430

QUAL = Quercus alba  (white oak)
QUPR = Quercus prinus  (chestnut oak)
PIVU = Pinus virginiana  (Virginia pine)

Table 3.  Bands used in the classification tree models.

5/14/2000 Normalized 5/14/2000 Original 7/13/2001 Normalized 7/13/2001 Original

Figure 6.  Prediction of relative basal area for P. 
virginiana, ranging from 0% (black areas) to > 
50% (white).  Virginia pine is especially 
prominent along west-facing slopes of ridges. 



 

 
unequivocal support for the need to implement topographic normalizations, our results do suggest that more research 
is needed to determine the relative value of terrain normalization for species mapping. 
 
4.  CONCLUSIONS 
 
 A composite map of species distributions generated from the classification trees yields a map (Figure 7) 
that closely resembles the actual distributions and dominance of the three species described in this paper.  These 
results represent a promising first step towards the application of AVIRIS imagery for detailed species mapping in 
rugged terrain.  The results were mixed regarding the value of the terrain normalization; however, we expect that a 
multi-temporal analysis of the normalized AVIRIS imagery will result in improved classification results for all 
species.  Finally, decision trees represent a promising technique for mapping using complex data sets (such as the 
CFI field data and AVIRIS hyperspectral data), reducing the need for data reduction or data transformation. 
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